Learning dynamical systems using local stability priors
نویسندگان
چکیده
A computational approach to simultaneously learn the vector field of a dynamical system with locally asymptotically stable equilibrium and its region attraction from system's trajectories is proposed. The nonlinear identification leverages local stability information as prior on system, effectively endowing estimate this important structural property. In addition, knowledge can be used design experiments by informing selection initial conditions which are generated enabling use Lyapunov function regularization term. Simulation results show that proposed method allows efficient sampling provides an accurate dynamics in inner approximation attraction.
منابع مشابه
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملStability of Dynamical Systems
Classical Control Stability of a system is of paramount importance. In general, an unstable system is both useless and dangerous. When a system is unstable, state and/or output variables are becoming unbounded in magnitude over time–at least theoretically. In practice, at some point in time, electronic amplifiers will saturate and mechanical components will reach their physical limits of motion...
متن کاملStability in Dynamical Systems
2. Hamiltonian Dynamics ................... 6 -2.1 Equations of Motion .................. 6 2.2 Symmetry, Integrals, and Cyclic Coordinates ....... 7 2.3 Motion Near a Known Periodic Solution ......... 8 2.4 Change of Independent Variable ............. 9 2.5 The Motion of a Particle in an Accelerator ........ 10 2.6 Floquet’s Theorem .................. 13 2.7 Higher-Order Terms ...................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of computational dynamics
سال: 2023
ISSN: ['2158-2491', '2158-2505']
DOI: https://doi.org/10.3934/jcd.2022021